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1. Introduction

Fitting models to the export and import time series of a conunodity may be .
used by economists and policymakers in gaining a better unders~anding of the
nature of our external trade and in making short-term forecasts. The model m<w
help in identifying factors or variables which may have generated the series.
These changes may be attributed to devaluation of the currency, to inflation, to

the imposition of control or decontrol measures. The fitted model may be used
also to predict future import values of the conunodity. These values in turn may
guide planners in detennining the appropriate control measures necessary to
regulate the importation of that conunodity leading to a favorable balance of
trade.

In this particular study, the Box-Jenkins method of model-bUilding is
applied to the Philippine fish and fish preparation import· series. First, a
tentative model is i dentifi ed for the seri es. Then, the unknown parameters of
the model are estimated. Finally, diagnostic checks are performed to detennined
the adequacy of the fitted model.

The data used in this study are monthly observations for 25 years (1953-1977)

of f .c.b, export and import values, in thousand US dollars, of fish and fish

preparation as published by the National Census Statistics Office. A computer
program written in FORTRAN IV was used for identification purposes while the
TSERIES package was utilized for preliminary and final estimation and diagnostic
checking.

2. The Box~enkins Non-Seasonal Models

. In the Box-Jenkins method of model-building, the first step is to postulate
a general class of models from which a particular model may be identified for
the observed time series. The different kinds of non-seasonal models -
autoregressive, moving average, autoregressive-moving average and integrated

models -- comprising this general class of models will be discussed in this
section.

•

•

lThis paper ·is taken from the author's masteral thesis completed at the
U.P. Statistical Center.

2The Author is a Senior Census Statistical Coordinator and Officer-in
Charge, Population and Housing Census Branch of the National. Census and
Stati stics Office. •
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• 2.1 The Autoregressive Model

Let at be a purely random process or white noise, that is, it consists of
a sequence of mutually independent and identically di stributed random vari ab1es
with mean zero and constant variance o~. The process Zt is satd to be an
autoregressive process of order p, abbreviated to AR(p), if

Zt =4>l Zt-1 + 4>2~-2 + •• 4>pZt-p + at •

This expression can be rewritten as

• where

4>(B) = 1 - 4>lB - 4>2B2 - .. 0 - 4> pBP

and B is called the backward shift operator defined as BjZt = Zt_jo

Due to its similarity to a multiple regresst on model the term
"autoregressive" is coined to describe this model. But, rather than regressing
on independent variables Zt is regressed on its own past values.

Initially, the order of autoregressive process to fit to an observed time
series is not known. The problem is analogous to deciding on the number of

.' independent variables to be included in a mul t tple regression. An analysis of
the correlogram of the partial autocorrelation function:

•
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•
In general. for an autoregressive process of order P. the partial

autocorrel ation function ~h w111 be nonzero for h ~ II and zero for h > P
which implies that the partial autocorrelation of a pth order AR process has a

cut-off after 1ag p.

2.2 Moving Average Model

A moving average process of order q. abbreviated to MA(q}. is defined by ,

Zt = at - 81 at-l - 82at-2 - ... - F.lqat-q (2.2.1)

where the symbols -~. .;,'(\2..... -flq are the finite set of weight
parameters. The expression (2.2.1) may be written in the equivalent form

Zt = (l - 81B - e2B2 - - eBq}at or zt = fl(B}at•q ,
The process is called a moving average process of order q because the

observations are a moving average in the disturbances reaching back to q periods.
The autocorrelation function· of a MA(q) process is zero. beyond the order q

of the process. In other words. the autocorrelation fu~tion of a moving
average process has a cut-off at lag q.

2.3 Mixed Autoregressive~ovfng Average Model

To achieve parsimony it may be necessary to include both autoregressive and
movi ng average terms. The mixed autoregressive-movi ng average of degree p and.
q,or abbreviated to ARMA (P.q) is defined by

•

Zt = <l>1Zt-l + ••• + 4>pZt-p + at - 9'Jat-l - '" -Sqat_q

Using the back-shift operator. this can be expressed as

(l - 4>lB - <P2B2 - ... -cPpBP}zt = (l - Ell B - a2B2 - ... - ElqBq}at.

or simply

(2.3.1 )

(2.3.2) ..<p(B}Zt = a(B}at

where cIl(B} and a(B} are polynomials of degree p and q in B.

The correlogram of the autocorrelation function of an" ARMA (P.q) process
consists of a mixture of damped exponentials and/or damped sine waves if
q-p < o, This general pattern. however. is not followed if q-p ~ O.

Although the partial autocorrelation function of a mixed process is infinite

in extent. eventually. it behaves like a pure moving average process in that its
correlogram is also dominated by a mixture of damped exponentials and/or damped
sine waves.

•
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• 2.4 Autoregressive Integrated Moving Average Model

The models described in the preceding sections are applicable to stationary

processes only. Since most of the observed time series are non-stationary.

these are reduced to stationary ones by suitable differencing. These models are

called autoregressive integrated moving average or ARIMA processes. The tenn

"integrated" is used because the stationary model fitted to the differenced data

has to be summed or integrated to provide a mode for non-stationary data.

The ARIMA (p.d .q) has the fonnljl,(B) vdzt =e(B)at or simply ~ (B)llW t = e(B)a t

• where vWt = vdzt. The model transforms the non-stationary process Zt
into mutually independent and identically distributed random variables. at .

. 3. Preliminary Identification

The objective of preliminary identification is to ,obtain an idea of the kind

of representational model which later on wi}l, be fitted to the data and

checked. At this stage of model building a \~at deal of judgment must be

exercised because of the inexact nature of the identification procedure.

The first step in the preliminary identification procedure is to difference

~ the observed time series as many times as needed to produce stationarity. Then.

the resulting ARMA model is identified.

3.1 Identifying the Degree of Differencing

The autocorrelation function of a stationary mixed auto-regressive moving

average process of order (P.o.q). ~ (B)zt = e (B)at• satisfies the difference

equation

~(B)p(h) = 0 h > q

•

•

P
Also. if HB) = 1: (l - GiB). assuming distinct roots. the solution of this

i=l
difference equation for the hth autocorrelation is of the fonn

h h h
p (h) = A1Gl + A2G? + ... ApGp• h > q-p.

The stationarity requirement that the zeroes of ~(B) lie outside the unit circle

implies that the roots G,. G2•••••Gp lie outside the uni~ circle.

If none of the roots lie close to the boundary of the unit circle the

autocorrelation functi on of a stationary model will quickly fade for moderate

and large h; however. if a root close'to unity exists the function will falloff

slowly and very nearly linearly. The estimated autocorrelation function tends

11



•
to follow the behavior of the theoretical autocorrelation function; therefore.

nonstationarity is indicated if the estimated autocorrelation function fails to

die out rapidly.

It is possible that the process may become stationary if differencing is

performed. The "dying-out" fairly quickly of the' autoc.orrelation function

indicates that stationarity has been achieved at that degree d of differencing ••

In practice it is usually sufficient to examine the first 20 estimated

autocorrelations and its first or second differences.

3.2 Idl!!ntifying the Resultant ARi'4A Model •

The order p and q for ARMA processes may be determined through the

characteristic behavior of the correlograms of its autocorrelation and partial

autocorre1ati on functi ons, The auto-correl ati ons of an autoregressi ve process

of order p tails off while its partial autocorrelation function has a cut-off

after lag p. Conversely. the ae.}ocorrelation function of a MA(q) process has a

cut-off after lag q. while ~~ partial autocorrelation tails off. A mixed

process is indicated if both autocorrelations and partial autocorrelations

exhibit exponential decay. Furthermore. its autocorrelation function consists

also of a mixture of exponentials and damped sine waves after the first q - p •

lags while its partial autocorrelation function is dominated by a mixture of

exponentials and damped sine waves after the first p - q lags.

3.3 Tl!!ntative Identification With Initial Estimates

As mentioned earlier the autocorrelation and the partial auto- correlation

functions are useful not only in helping guess the form of the model but also·in

obtaining preliminary estimates of the parameters. The PEST command in the

TSERIES computer program computes the preliminary estimates of the parameters of

the specified model. In addition to the preliminary estimates for a specified

ARMA model. this cornnland also produces the following outputs: the sample •

autocorrelation function of the working series. the sample partial auto

correlation of the working series and the chi-square statistic associated with

the "portmanteau test" for the sample autocorrelations.

4. ~aximum Ll~elihood Estimation of Model Parameters

After having identified a tentative model for a given time series. the next

step in the Box-Jenkins model building is to obtain estimates of the model para- I

meters which make efficient use of the data. If the estimation procedure is not

efficient. then it could be possible that inadequacy of fit is due to inefficient

12



•
fitting land not because the assumed model is incorrect. It may be shown that
estimates which maximize the likelihood function are generally inefficient when
the number of observations is large.

4.1 The Conditional Maximum Li~elihood Function

Let zl' .... zN be the observed series and wl''' "wn be the
differenced series. where n = N - d and wt = vdzt• Suppose that the
identified model for the observed series is ARIMA (p.d.q). Then the differenced
series can be fitted to the ARMA (P.q) model which may be written as

independently and normally

at = Wt - ~lWt-l - ~2Wt-2 - .. , - ~pWt-p

+ 61at-l + 62at-2 + ••. + 6qat_q (4.1.1)

Unfortunately. the at's cannot be obtained directly from (4.1.1) because ot
the difficulty of starting up the difference equation. However. the values of
at can be calculated successively if preliminary estimates of the parameters

t' =8>1. ~2.··· .~pJ and ~' = ~l • 6 2•...•6q ] are given together ~-lith

the starting values '!!.* = twO. w-l." ..Wl-P] and ~* = GtO. a-b'" .al-qJ.

• Now. on the assumption that the at's are
distributed their joint density is given by

° 2 -n/2 I 1 2 n 2
p(al.a2.· ...an) = (2IToa ) exp - "t'a tat

Since the Jacobian of the transformation is unity. d~rect sUbstitution of
in (4.1.2) gives the following joint density of the wt's:

c )
(4.1. 2)

(4.1.1)

Given the data w. the likelihood function associated with the parameter values
(.!. !. J ). conditional on the choice of '!'!..* and !.* is therefore

13



where •
n
1:at (t., s. ~ .!,:!)

t=l

Since the interest is only in the relative magnitude of the likelihood, it

suffices to consider only the log likelihood function given by

(4.1.3)

In the conditional log likelihood function given by (4.1.3) the

pareneters 1 and !:, which are estimated with the use of the data :!, enter only

through the sum of squares S (~, !.). Therefore, to maximize the likelihood

function it is necessary only to minimize the ·sum of squares function and the

values of the parameters. In other words, the conditional maximum likelihood

estimates are ~quivalent to least squares estimates.

4.2 Nonlinear Estimation

In' general, model (4.1.1l is nonlinear in the parameters.

model, at is first expanded in Taylor series about

correspon~ing to some guessed set of parameter value.

The equation may be expressed in matrix form as

C~~I =! (! - 13 0 ) + [!I
where .!o and .! are col umn vectors and

XI,I Zl,2 Xl,p+q
X2,l X2,2 X .

X= 2;p+q

X 2 .,. X +n. n,p q

The coefficients 81 - 8i,O can then be estimated as

B - Bo = (X'X) -1 X ~l

To 1inearize the

its value at,O

•

by the method of ordina ry least squares. Gi ven the estimate B - Bo' the

initial estimate S6 is adjusted by s'o. = So + (B - Bo) and the

process is repeated·until satisfactory convergence is obtained.

The nonlinear estiination procedure described above may converge very slowly

OJ:' not at all. A more efficient procedure used in this study is the Marquadt

algorithm (1963) which is essentially a compromise procedure between th'e

linearization technique discussed above and the method of "steepest descent"

described in Draper and smith (1966).

14 ••
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5. Model Validation and Modification

At the start of model building one is dealing with uncertainties -- possible

model s are only "guessed" at in the identification stage and the true

coefficients of the model are only estimated in the final stage. Unless some

kind of test is performed on the fitted model one cannot use it with confidence

for forecasting. It is for this reason that diagnostic checking is necessary as

the last step in the Box-Jenkins method of model building. Not only does it

provide a way of assessing the adequacy or inadequacy of a fitted moael for a

given data set but it may also lead to alternative models. Box and Jenkins

• describe several methods of diagnostic checking, but for this study residual

analysis and the portmanteau lack-of-fit test was employed.

The rationale behind the use of the residuals as a means of checking for

model adequacy is that the residuals will constitute a white noise process if

the .fitted model is the correct· one. Anderson has shown that the sample

autocorrelations "white noise" residuals are uncorrelated and normally

distributed with mean zero and standard deviation 1/ rn for moderately large

samples. One can then make use of the sample autocorrel attcns to assess anY

deviations from white noise behavior. It should be reiterated that this holdgo

~ true only if the form of the model is correct and the real parameter values are

known.

Box and Pierce (1970) devi sed a chi-square test of model adequacy, better

known as the portmanteau lack-of-fit test wherein the .autocorrelations of the

estimated residuals are considered together rather than individually. The null

I1Ypothesis that the true model residuals are white noise is tested using the

statistic

Q
H
1: ra(h), ,

h=l
h = 1,2, ••• , H, = N - d

which has a chi-square distribution with degrees of freedom equal to (H-p-q).

~ The null hYpothesis is rejected for large values of Q.

•

6. Box-Jenkins Model for Import Values of Fish and Fish Preparation

As an illustration, a model will be fitted to the import values of fish and

fish preparation from 1953 to 1977. To determine the general behavior of the

series, the 300 observations were· first plotted (Figure 1). The computer

Program on identification was run and the computed autocorrelations and partial

autocorrelations were plotted in Figure 2. As shown in Figure 2, d :: 0, the

behavior of the autocorrelation function of fish import series strongly suggests

an AR(1.) process. It is characterized by a damped exponential. The correlogram

15
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Fill. 2 - ESTIMATED AUTOCORRELATIONS AND PARTIAL AUTOCClRRELATIONS

OF FISH AND FISH PREPARATION - IMPORT TIME SERIES •
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of the p~rtial autocorrelations supports this guess as the values are zero after
the first lag. Not much infonnation can be observed from the first differenced
series, but in the same figure for d =2, ~n alternative model m~ be suspected.
The autocorrelations have damped exponential behavior which suggests a tentative
IMA(O,2,l) model.

Using the PEST command in the TSERIES package program, preliminary estimates
of the parameters of the spectfi ed model for fi sh import were computed. There
were two proposed models for this series - the AR(l) and IMA(o,2,l) models. The
preliminary estimates of the first model had the form

Zt =0.6988 Zt-l + at

and the second,

112at = at - 1.3368 at-l.

At this point, we can eliminate the possibility of an IMA(o,2,l) model for fish
import because the estimate of 8 l' of 8, does not satisfy the invertibility
condition of a MA process. To be invertible, 81, must lie in the range
-1 < 8 , < 1. Since 81 which is equal to 1.3368 is greater than 1, then the
model IMA (0~2,l) is not invertible.

The parameters of the identified. model were estimated by the method of
•

maximum likelihood employing the command ESTI in the same package program. The
correlograms of the series indicated an AR(l) model with the following estimates,

Zt = 434.5715 + 0.7007 Zt-l + at

and a residual variance of 3.86 x 105• A constant term was included in the
model because the mean of the series is non-zero and d = O. The final estimate
of the model differs from the preliminary estimate by the constant term. The
value of the constant term in the preliminar,y estimate was truncated because the
number of digits computed was larger than the number specified in the program.
However, the preliminary and final estimates of 8 1 are nearly the same.

The ESTI command also provided for various outputs for residual analysis and
diagnostic checking of the model and it turned out that the ARO) model fitted
to fish import time series was adequate. The observed Q-yalue of 20.353 was not
significant at both 5% and 1at 1evels of si gnificance. The approximate upper
bound for the standard error of a st ngl e autocorre1ati on is 1/ vn or
1/ V3Qij or 0.06. Referring to Figure 3, P (9) = 0.12, s un = 0.10, P (2)" =

0.10 and p(19) = 0.08 are large compared with 0.06. However, taking the results
as a whole the Q-value obtained turned out to be not significant. Hence, itm~

be safely concluded that the AR(l) model is adequate for fish and fish
preparation import series.

18
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•7. Sunmary

In this study, the Box-Jenkins method of model building was employed to

construct a model for Philippine export ~nd import time series of fish and fish

preparation. The preliminary identification and the initial estimation of the

model parameters were made usi ng the correlograms of the autocorrel ation and

partial autocorrelation function as primary tools. 'The final estimates of the

model parameters. were obtained by .the· method of maximum likelihood using a

constrained optimi zati on method commonly referred to as the ,Marquadt al gori thm.

Diagnostic checking of the fitted model was performed using the Box-Pierce

portmanteau lack-of-fit test. •
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